Course Outline

Part I

Programme Title	:	Doctor of Education	
Programme QF Level	:	7	
Course Title	:	Applying Multilevel Models to Educational Assessment	
Course Code	:	EMA8004	
Department	:	Psychology	
Credit Points	:	3	
Contact Hours	:	39	
Pre-requisite(s)	:	Students are expected to have completed basic training in quantitative research method (such as hypothesis testing and multiple regression analysis) before taking this course.	
Medium of Instruction	:	EMI	
Course Level	:	7	

Part II

The University's Graduate Attributes and seven Generic Intended Learning Outcomes (GILOs) represent the attributes of ideal EdUHK graduates and their expected qualities respectively. Learning outcomes work coherently at the University (GILOs), programme (Programme Intended Learning Outcomes) and course (Course Intended Learning Outcomes) levels to achieve the goal of nurturing students with important graduate attributes.

In gist, the Graduate Attributes for Undergraduate, Taught Postgraduate and Research Postgraduate students consist of the following three domains (i.e. in short "PEER & I"):

- Professional Excellence;
- Ethical Responsibility; &
- Innovation.

The descriptors under these three domains are different for the three groups of students in order to reflect the respective level of Graduate Attributes.

The seven GILOs are:

- 1. Problem Solving Skills
- 2. Critical Thinking Skills
- 3. Creative Thinking Skills
- 4a. Oral Communication Skills

- 4b. Written Communication Skills
- 5. Social Interaction Skills
- 6. Ethical Decision Making
- 7. Global Perspectives

1. Course Synopsis

Data collected for accountability purposes often involve nested or hierarchical data structure. For instance, students are nested within classes, and classes within schools. Since the late 1980's multilevel modelling has been used as a standard approach to handle such nested data structure. This module aims to study the application of multilevel modelling for educational assessment and to enable candidates to analyse data requiring such model structure to address innovative research questions. Examples will be drawn from the value-added indicator system of the Hong Kong Special Administrative Region, and other relevant situations where multilevel modelling is deemed appropriate. Strengths and weakness of multilevel modelling will be discussed in the analyses of these real data.

2. Course Intended Learning Outcomes (CILOs)

Upon completion of this course, students will be able to:

- CILO₁ Understand the key concepts and issues involved in multilevel models;
- CILO₂ Apply multilevel models to designing and executing research studies in a professional manner in order to address policy questions from a variety of educational context;
- CILO₃ Use R computer software to analyse multilevel data to address innovative research questions;
- CILO₄ Evaluate critically the strengths and limitations of multilevel models in handling data from educational assessment and measurement.

	Course Content	CILOs	Suggested Teaching & Learning Activities
1.	Rationale for using multilevel models	CILO _{1-2,4}	Lectures, Group
			Discussions
2.	Research and policy questions in	CILO _{1-2,4}	Lectures, Group
	educational contexts that can be addressed		Discussions
	using multilevel models		

3. Content, CILOs and Teaching & Learning Activities

3.	Variance component models: examples	CILO ₁₋₄	Lectures, Group
	from education; data structure; model		Discussions, Class
	specification; data analysis using R;		Exercise, Hands-on
	residual analysis		Workshop
4.	Random coefficient models: School Value-	CILO ₁₋₄	Lectures, Group
	Added Indicator System (SVAIS) and		Discussions, Class
	other applications in educational contexts;		Exercise, Hands-on
	model specification; data analysis using R;		Workshop
	residual analysis; model assessment;		
	model interpretation		
5.	Model building: adding another level;	CILO ₁₋₄	Lectures, Group
	adding more fixed effects; higher level		Discussions, Class
	residuals; complex level-1 variation;		Exercise, Hands-on
	interpretation of outcomes from R; testing		Workshop
	assumptions and model evaluation		
6.	Discrete response model: University	CILO ₁₋₄	Lectures, Group
	entrance and other applications in		Discussions, Class
	education; estimation models including		Exercise, Hands-on
	MCMC; proportion as response; multiple		Workshop
	response categories model; models for		
	counts; models for ordered response		
7.	Repeated measures model: Tracking	CILO ₁₋₄	Lectures, Group
	growth and development in education;		Discussions, Class
	scaling across time; analysis of		Exercise, Hands-on
	longitudinal data		Workshop
8.	Multivariate multilevel data: Analysis of A	CILO ₁₋₄	Lectures, Group
	Level Examination results and other		Discussions, Class
	applications of multivariate multilevel		Exercise, Hands-on
	data; rotation designs; principal		Workshop
	component analysis; model assessment;		
	interpretation of outcomes from R		
9.	Strength and weaknesses of commonly	CILO ₁₋₄	Lectures, Group
	available models including HLM and		Discussions, Class
	SEM		Exercise, Hands-on
			Workshop

4. Assessment

	Assessment Tasks	Weighting (%)	CILO
(a)	A series of mini-projects and computer lab work	30%	CILO ₁₋₄

	completed during class time on real data sets		
(b)	A module project on the application of multilevel	70%	CILO ₁₋₄
	models to a policy issue identified by the candidate		

5. Required Text(s)

Finch, W. H., Bolin, J. E., & Kelley, K. (2019). *Multilevel modeling using R* (2nd ed.). Chapman & Hall.

6. Recommended Readings

張雷、雷靂、郭伯良 (2003)。《多層線性模型應用》。教育科學出版社。

温福星 (2009)。《階層線性模式:原理,方法與應用》。雙葉書廊有限公司。

Heck, R., & Thomas, S. L. (2020). *An introduction to multilevel modeling techniques* (4th ed.). Routledge.

Hox, J., Moerbeek, M., & van de Schoot, R. (2017). *Multilevel analysis: Techniques and applications* (3rd ed). Routledge.

- Khine, M. S. (Eds). (2022). *Methodology for multilevel modeling in educational research: Concepts and research.* Springer.
- Little, T. D., Schnabel, K. U., & Baumert, J. (2000). *Modeling longitudinal and multilevel data*. Erlbaum.
- Raudenbush, S. W., & Bryk, A. S. (2002). *Hierarchical linear models: Applications and data analysis methods.* Sage Publications.
- Singer, J. D., & Willet, J. B. (2003). *Applied longitudinal data analysis: Modeling change and event occurrence*. Oxford University Press.
- Van de Vijver, F. J. R., van Hemert, D. A., & Poortinga, Y. H. (Eds.) (2008). *Multilevel* analysis of individuals and cultures. Lawrence Erlbaum Associates.
- West, B., Welch, K. B., Galecki, A. T. (2022). *Linear mixed models: A practical guide using statistical software* (3rd ed.). Chapman & Hall.

7. Related Web Resources

Centre For Mulilevel Modeling (CMM)

• <u>http://www.bristol.ac.uk/cmm/</u>

Examples on multilevel modeling software for several textbooks can be obtained from the developing resources at UCLA Advanced Research Computing: Statistical Methods and Data Analytics

• <u>https://stats.oarc.ucla.edu/other/examples/</u>

Professor Tom A. B. Snijders, Professor of Statistics in the Social Sciences at the University of Oxford and Professor of Methodology and Statistics in the Faulty of Behavioral and Social Sciences at the University of Groningen, has placed a number of resources at:

• <u>http://www.stats.ox.ac.uk/~snijders/multilevel.htm</u>

One of the most interesting features is the PINT programme to do power analysis for the estimation of sample size for two-level designs.

This website of Harvard Graduate School of Education contains good references for Applied Longitudinal Data Analysis (ALDA).

• <u>http://gseacademic.harvard.edu/~alda/</u>

8. Related Journals

Journal of the Royal Statistical Society Series A Statistics in Society Journal of Educational and Behavioral Statistics Journal of Applied Psychology Multivariate Behavioral Research School Effectiveness and School Improvement Computational Statistics and Data Analysis Organizational Research Methods *Quality and Quantity* Psychometrika Psychology Methods Structural Equation Modeling Sociological Methodology **Behavior Research Methods** Educational and Psychological Measurement Journal of Educational Psychology Studies in Educational Evaluation American Educational Research Journal Sociological Methods and Research

9. Academic Honesty

The University adopts a zero tolerance policy to plagiarism. For the University's policy on plagiarism, please refer to the *Policy on Academic Honesty, Responsibility* and Integrity with Specific Reference to the Avoidance of Plagiarism by Students (https://www.eduhk.hk/re/modules/downloads/visit.php?cid=9&lid=89). Students should familiarize themselves with the Policy.

10. Others

Nil

TPg Courses with other Study Modes

Programme Title	:	Doctor of Education
Course Title	:	Applying Multilevel Models to Educational Assessment
Course Code	:	EMA8004
Offering Unit	:	Psychology
Credit Points	:	3

Delivery mode:

□ Online learning as the primary delivery mode

Range of classroom-based contact hours (0-15)	Range of hours for online learning (24-39)	Total No. of Contact Hours
		39

☑ Directed study mode

Range of classroom-based contact hours (4-15)	Range of guided independent learning hours (24-35)	Total No. of Contact Hours
15	24	39