Asia-Pacific Forum on Science Learning and Teaching, Volume 21, Issue 1, Article 7 (Dec., 2021)
Işık Saliha KARAL EYÜBOĞLU, Hava İPEK AKBULUT & Ayşegül SAĞLAM ARSLAN
Pre-service science teachers’ procedural and conceptual understanding on electric field

Previous Contents


References

Abraham, M. R., Williamson, V. M., & Wetsbrook S.L. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147–165. 

Arslan, S. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and its Applications: An International Journal of the IMA, 29(2), 94-107. 

Aydın, S., Keleş, P. U., Haşıloğlu, M. A., & Aydın, L. (2016). Academicians’ views on conceptual and procedural learning in science education. Participatory Educational Research, 3(5), 121-129. 

Barak, M. (2013). Teaching engineering and technology: cognitive, knowledge and problem-solving taxonomies. Journal of Engineering, Design and Technology, 11(3), 316-333. 

Bilal, E., & Erol, M. (2009). Investigating students' conceptions of some electricity concepts. Latin-American Journal of Physics Education, 3(2), 193-201. 

Bloom, B. S. (1956). Taxonomy of educational objectives, the classification of educational goals, handbook I: Cognitive domain. New York: Da-vid McKay Company. 

Blumberg, P. (2009). Maximizing learning through course alignment and experience with different types of knowledge. Innovative Higher Education, 34(2), 93-103. 

Boden, K., Kuo, E., Nokes-Malach, T., Wallace, T., & Menekse, M. (2018, January). What is the role of motivation in procedural and conceptual physics learning? An examination of self-efficacy and achievement goals. In Proceedings of the 2017 Physics Education Research Conference, Cincinnati, OH (p. 60). 

Bozkurt, E. (2014). TPACK levels of physics and science teacher candidates: Problems and possible solutions. Asia-Pacific Forum on Science Learning and Teaching, 15(2), 1-22. 

Bradamante, F., Michelini, M., & Stefanel, A. (2006). Learning problems related to the concept of field. Frontiers of Fundamental Physics, 367-379. 

Cao, Y. & Brizuela, B.M. (2016). High school students’ representations and understandings of electric fields. Physical Review Physics Education Research, 12(2), 1-19. 

Chabay, R. & Sherwood, B. (2006). Restructuring the introductory electricity and magnetism course. American Journal of Physics, 74(4), 329–336. 

Chappell, K. K., & Killpatrick, K. (2003). Effects of concept-based instruction on students' conceptual understanding and procedural knowledge of calculus. Problems, Resources, and Issues in Mathematics Undergraduate Studies, 13(1), 17-37. 

Chevallard, Y. (1989). Rapport au savoir. Séminaire de Didactique des Mathématiques et de l'Informatique. http://www.gfen.asso.fr/images/documents/publications/

Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropological approach. In R. Douadi & A. Mcrcier (Eds.), Research in Didactique of Mathematics: Selected papers. La Pensѐe Sauvage, Grenoble, pp. 131-168. 

Chiu, M. H. (2001). Algorithmic problem solving and conceptual understanding of chemistry by students at a local high school in Taiwan. Proceedings-National Science Council Republic of China Part D Mathematics Science and Technology Education, 11(1), 20-38. 

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37-46. 

Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34(4), 344-377. 

Duggan, S., & Gott, R. (2002). What sort of science education do we really need? International Journal of Science Education, 24(7), 661-679. 

Duval, R. (1993). Registres de representation semiotique et fonctionnement cognitif de la pensee. Annales de Didactique et de Sciences Cognitives- IREM de Strasbourg 5:37–65. 

Elliot, A. J., McGregor, H. A., & Gable, S. (1999). Achievement goals, study strategies, and exam performance: a mediational analysis. Journal of Educational Psychology, 91(3), 549-563. 

Fishbane, PM., Gasiorowicz, S. & Thornton, ST. (2003). Temel Fizik Cilt 2. Ankara: Arkadaş Yayınevi. 

Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378- 382. 

Furio, C. & Guisasola, J. (1998). Difficulties in learning the concept of electric field. Science Education, 82(4), 511–526. 

Furió, C., & Guisasola, J. (2001). The teaching of the concept of electric field: mountain or hill. In Proc. Esera Conf., Kiel. https://archiv.ipn.uni-kiel.de/projekte/esera/book/026-fur.pdf. 

Goswami, M. & Parida, B.K. (2015, December). Exploring students’ thought processes involved in the interpretation of electric field lines. EpiSTEME 6: Emerging Computational Media and Science Education, TIFR, Mumbai. 

Greca, I.M. & Moreira, M.A. (2000). Mental models, conceptual models, and modelling. International Journal of Science, 22(1), 1-11. 

Guisasola, J., Almudi, J. M., & Zubimendi, J. L. (2004). Difficulties in learning the introductory magnetic field theory in the first years of university. Science Education, 88(3), 443-464. 

Hekkenberg, A. (2012). Addressing misconceptions about electric and magnetic fields: A variation theory analysis of a lecture's learning space (Unpublished master’s thesis). Utrecht University. 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems research. MIS quarterly, 28(1), 75-105. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics pp.1-27. Hillsdale, NJ: Lawrence Erlbaum. 

Hulleman, C. S., Durik, A. M., Schweigert, S. A., & Harackiewicz, J. M. (2008). Task values, achievement goals, and interest: an integrative analysis. Journal Of Educational Psychology, 100(2), 398-416. 

Jiamu, C. (2001). The great importance of the distinction between declarative and procedural knowledge. Analise Psicologica, 4(21), 559-566. 

Kar, T., Çiltaş, A., & Işık, A. (2011). Cebirdeki kavramlara yönelik öğrenme güçlükleri üzerine bir çalışma. Kastamonu Eğitim Dergisi, 19(3), 939-952. 

Karal, I.S. & Uzun, S. (2018). Pre-service science teachers’ descriptions of the electric field. Journal of Uludag University Faculty of Education, 31(2), 481-505. 

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press. 

Landis, J, R., & Koch, G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159-174. 

Li, J. & Singh, C. (2017). Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism. European Journal of Physics, 38(2), 1-25. 

Maloney, D. P., O’Kuma, T. L., Hieggelke, C. J. & Van Heuvelen, A. (2001). Surveying students’ conceptual knowledge of electricity and magnetism. American Journal of Physics, 69(S1), S12-S23. 

Martín, J., & Solbes, J. D. (2001). Diseño y Evaluación de una propuesta para la enseñanza del concepto campo en física [Design and evaluation of a proposal for teaching the concept of field in physics]. Enseñanza de las Ciencias, 19(3), 393–403. 

Melo, L., González-Gómez, D., & Jeong, J. S. (2020). Exploring pedagogical content knowledge (PCK) of physics teachers in a Colombian secondary school. Education Sciences, 10(12), 362. 

Nousiainen, M. & Koponen, I.T. (2017). Pre-service physics teachers’ content knowledge of electric and magnetic field concepts: Conceptual facets and their balance. European Journal of Science and Mathematics Education, 5(1), 74‐90. 

Phuong, H. T. M. (2019). On the procedural-conceptual based taxonomy and its adaptation to the multi-dimensional approach spur to assess students’ understanding mathematics. American Journal of Educational Research, 7(3), 212-218. 

Pocovi, M. C. & Finley, F. N. (2003). Historical evolution of the field view and textbook accounts. Science and Education, 12(4), 387–396. 

Raduta, A. A. (2015). Nuclear Structure with Coherent States. Switzerland: Springer International Publishing. 

Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical problem solving. Cognition and Instruction, 23(3), 313-349. 

Saarelaeen, M. (2011). Teaching and learning of electric and magnetic fields at university level. Dissertation in Forestry and Natural Science. University of Eastern Finland. 

Saarelainen, M., Laaksone, A., & Hirvomen, P. E. (2009). Designing a teaching sequence for electrostatics at undergraduate level by using educational reconstruction. Latin American Journal of Physics Education, 3(3), 518–526. 

Sağlam Arslan, A. (2016). Didaktiğin antropolojik teorisi. In E. Bingölbali, S. Arslan, İ. Ö. Zembat (Eds.), Matematik eğitiminde teoriler (377-392). Ankara: Pegem Akademi. 

Sağlam, A. (2004). Les Équations Différentielles en Mathématiques et en Physique: Étude des conditions de leur enseignement et caractérisation des rapports personnels des étudiants de première année d’université à cet objet de savoir, PhD Thesis, Universite Joseph Fourier, Grenoble. 

Sağlam, M. & Millar R. (2006). Upper high school students’ understanding of electromagnetism. International Journal of Science Education, 28(5), 543-566. 

Serway, R. A., & Beichner, R. J. (2010). Physics for Scientists and Engineers with Modern Physics, (Çev. Ed.: Kemal Çolakoğlu). Ankara: Palme Yayıncılık. 

Shakhman, L., & Barak, M. (2019). The Physics Problem-Solving Taxonomy (PPST): Development and Application for Evaluating Student Learning. EURASIA Journal of Mathematics, Science and Technology Education, 15(11), 1-16. 

Silva, C. C. (2007). The role of models and analogies in the electromagnetic theory: A historical case study. Science & Education, 16(7–8), 835–848. 

Surif, J., Ibrahim, N. H., & Mokhtar, M. (2012). Conceptual and procedural knowledge in problem solving. Procedia-Social and Behavioral Sciences, 56, 416-425. 

Tornkvist, S., Pettersson, K. A. & Transtromer, G. (1993). Confusion by representation: On student’s comprehension of the electric field concept. American Journal of Physics, 61(4), 335-338. 

Türkkan, E. (2017). Investigation of physics teacher candidates' cognitive structures about" electric field": a free word association test study. Journal of Education and Training Studies, 5(11), 146-156. 

Wolfer, A.J. & Lederman, N.G. (2000). Introductory college chemistry students' understanding of stoichiometry: Connection between conceptual and computational understandings and instruction. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA, April 28–May 1, 2000. [On-line]. ERIC Document Reproduction Service: ED440856. 

Yin, R. K. (2003). Designing case studies. Qualitative Research Methods, 5(14), 359-386. 

 

 


Copyright (C) 2021 EdUHK APFSLT. Volume 21, Issue 1, Article 7 (Dec., 2021). All Rights Reserved.