Asia-Pacific Forum on Science Learning and Teaching, Volume 19, Issue 1, Article 5 (Jun., 2018)
Jordi SOLBES, Nidia TORRES and Manel TRAVER
Use of socio-scientific issues in order to improve critical thinking competences

Previous Contents


References

Adorno, T. W. & Horkheimer, M. (2002). Dialectic of Enlightenment. Stanford: Stanford UP.

Aikenhead, G. S., (1985). Collective decision making in the social context of science. Science Education, 69(4), pp. 453-475

Albe, V. (2008). When Scientific Knowledge, Daily Life Experience, Epistemological and Social Considerations Intersect: Students Argumentation in Group Discussions on a Socio-scientific Issue. Research in Science Education, 38, 67-90. http://dx.doi.org/10.1007/s11165-007-9040-2.

Barrue, C. & Albe, V. (2013). Citizenship Education and Socio-scientific Issues: Implicit Concept of Citizenship in the Curriculum, View of French Middle School Teachers. Science & Education, 22, 1089-1114.

Çalik, M., & Coll, R. (2012): Investigating Socio-scientific Issues via Scientific Habits of Mind: Development and validation of the Scientific Habits of Mind Survey. International Journal of Science Education, 34(12), 1909-1930. http://dx.doi.org/10.1080/09500693.2012.685197

Cohen, L. Manion, L. & Morrison, K. (2007). Research Methods in Education. London & NY: Routledge.

Day, S., & Bryce, T. (2011): Does the Discussion of Socio‐Scientific Issues require a Paradigm Shift in Science Teachers' Thinking? International Journal of Science Education, 33(12), 1675-1702.
http://dx.doi.org/10.1080/09500693.2010.519804.

Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socio-scientific issues in high school genetics. Research in Science Education, 40, 133–148. DOI 10.1007/s11165-008-9104-y

Driver, R., Newton, P., & Osborne., J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.
http://dx.doi.org/10.1002/(SICI)1098-237X(200005)84:3%3C287::AID-SCE1%3E3.3.CO;2-1

Ekahitanond, V. (2013). Promoting university students’ critical thinking skills through peer feedback activity in an online discussion forum. Alberta Journal of Educational Research59(2), 247-265.

Ennis, R. (1987). A taxonomy of critical thinking dispositions and abilities. En J. B. Baron & R. J. Sternberg (Eds.), Teaching thinking skills (pp. 9-26). New York: Freeman and Company.

Facione, P.A., Facione N. C., & Giancarlo, C. (2000). The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skills, Journal of Informal Logic, 20(1), 61-84.

Freire, P. (1996). Pedagogy of autonomy: knowledge necessary for educational practice. Sao Paulo: Peace and Earth.

Giroux, H. A. (1988). Teachers as intellectuals: Toward a critical pedagogy of learning. Greenwood Publishing Group.

Habermas, J. (1971) 'Technology and Science as "Ideology" ', in Toward a Rational Society. London: Heinemann

Haack, S. (2007). Defending science-within reason: Between scientism and cynicism. Prometheus Books.

Halpern, D. (2006). Critical Thinking Assessment Using Everyday Situations: Background and Scoring Standards (2nd Report). Claremont, CA: Claremont McKenna College.

Jiménez-Aleixandre, M.P. (2010). 10 ideas clave. Competencias en argumentación y uso de pruebas. Barcelona: Graó.

Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of research in science teaching29(4), 331-359.

Malamitsa, K., Kasoutas, M. & Kokkotas, P. (2009). Developing Greek Primary School Students' Critical Thinking through an Approach of Teaching Science which Incorporates Aspects of History of Science. Science & Education, 18, 457-468.

McMillan, J.H. (1987). Enhancing college students’ critical thinking: A review of studies. Research in Higher Education, 26, 3-29.

Marcuse, H. (1991). One-dimensional Man: studies in ideology of advanced industrial society. London: Routledge.

Nickerson, R.S. (1994). The teaching of thinking and problem solving. In R.J. Sternberg (Ed.). Thinking and problem solving (pp.409-449). San Diego, CA: Academic Press.

Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463–466. DOI: 10.1126/science.1183944

Passmore, C. & Svoboda, J. (2012): Exploring Opportunities for Argumentation in Modelling Classrooms, International Journal of Science Education, 34(10), 1535-1554. http://dx.doi.org/10.1080/09500693.2011.577842

Popper, K. (1970). Normal science and its dangers. Cambridge University Press.

Rundgren, S.., & Yao, B. (2014). Visualization in research and science teachers’ professional development. In Asia-Pacific Forum on Science Learning and Teaching, 15 (2), 1-21.

Sadler, T.D. (2004). Informal reasoning regarding socio-scientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513–536. http://dx.doi.org/10.1002/tea.20009

Sadler, T. D., & Zeidler, D. L. (2004). The morality of socio-scientific issues: Construal and resolution of genetic engineering dilemmas. Science education, 88(1), 4-27.

Seyhan, H. (2015). The effects of problem solving applications on the development of science process skills, logical thinking skills and perception on problem solving ability in the science laboratory.  Asia-Pacific Forum on Science Learning & Teaching, 16, (2).

Solbes, J. y Torres, N. (2012). Análisis de las competencias de pensamiento crítico desde el aborde de las cuestiones socio-científicas: un estudio en el ámbito universitario. Didáctica de las Ciencias Experimentales y Sociales, 26, 247-269. DOI: 10.7203/DCES.26.1928

Solbes, J. & Traver, M. (2003). Against negative image of science: history of science in the physics & chemistry Education, Science & Education, 12, 703-717.

Solbes, J. & Vilches, A. (1997). STS interactions and the teaching of physics and chemistry. Science Education, 81(4), 377-386.

Topcu, M.S. (2010). Development of attitudes towards socio-scientific issues scale for undergraduate students. Evaluation and Research in Education, 23(1), 51– 67. http://dx.doi.org/10.1080/09500791003628187.

Torres, N. y Solbes, J. (2016). Contribuciones de una intervención didáctica usando cuestiones socio-científicas para desarrollar el pensamiento crítico. Enseñanza de las ciencias: revista de investigación y experiencias didácticas34(2), 43-65.DOI: http://dx.doi.org/10.5565/rev/ensciencias.1638

Tytler, R. & Prain ,V. (2010): A Framework for Re‐thinking Learning in Science from Recent Cognitive Science Perspectives. International Journal of Science Education, 32(15), 2055-2078.
http://dx.doi.org/10.1080/09500690903334849.

Van Zee, E. & Minstrell, J. (1997). Using questioning to guide student thinking. The Journal of the Learning Sciences, 6(2), 227–269.

Vieira, M. R., Tenreiro-Vieira, C. y Martins, E. (2010). Pensamiento Crítico y literaria científica. Alambique, 65, 96-104.

Windschitl, M., Thompson, J. & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.
http://dx.doi.org/10.1002/sce.20259

Yager, R.E. (1993). Science and critical thinking. In Clarke, J.H. & Biddle, A.W. (Eds.), Teaching critical thinking: Reports from across the curriculum. Englewood Cliffs, NJ: Prentice Hall.

Zoller, U. & Pushkin, D. (2007). Matching higher-order cognitive skills (HOCS) promotion goals with problem-based laboratory practice in a freshman organic chemistry course. Chem. Educ. Res. Pract., 8(2), 153-171. DOI: 10.1039/B6RP90028C

 


Copyright (C) 2018 EdUHK APFSLT. Volume 19, Issue 1, Article 5 (Jun., 2018). All Rights Reserved.