Asia-Pacific Forum on Science Learning and Teaching, Volume 16, Issue 2, Article 7 (Dec., 2015)
Pablo Antonio ARCHILA
Evaluating evidence from a historical chemical controversy: A study in a French high school

Previous Contents


References

Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107.

Adúriz-Bravo, A. (2014). Revisiting school scientific argumentation from the perspective of the history and philosophy of science. In M. R. Matthews. (Ed.). International handbook of research in history, philosophy and science teaching (pp. 1443–1472).  Dordrecht: Springer.

American Association for the Advancement of Science (AAAS). (1993). Benchmarks for science literacy. New York: Oxford University Press.

Allchin, D., Andersen, H. M., & Nielsen, K. (2014). Complementary approaches to teaching nature of science: Integrating student inquiry, historical cases, and contemporary cases in classroom practice. Science Education, 98(3), 461–486.

Archila, P. A. (2014a). Are science teachers prepared to promote argumentation? A case study with pre-service teachers in Bogotá city. Asia-Pacific Forum on Science Learning and Teaching, 15(1), 1–21.

Archila, P. A. (2014b). Argumentation in chemistry teacher education: Past, present and future opportunities. Revista Científica Vozes dos Vales, 6,1–12.

Archila, P. A. (2014c). La argumentación en la formación de profesores de química: Relaciones con la comprensión de la historia de la química. Revista Científica. 18, 50-66.

Archila, P. A. (2015). Using history and philosophy of science to promote students’ argumentation. A teaching–learning sequence based on the discovery of oxygen. Science & Education, 24(9), 1201–1226.

Aristizábal, C. A. (2014). Configuración de la identidad profesional docente como producto cultural. In A. Molina. (Ed.). Enseñanza de las ciencias y cultura: Múltiples aproximaciones (pp. 165–121). Bogotá: Ediciones Universidad Distrital Francisco José de Caldas.

Australian Curriculum, Assessment and Reporting Authority (ACARA). (2012). Australian curriculum: Science F-10 version 3.0. Sydney: Australian Curriculum, Assessment and Reporting Authority.

Barak, M., Ben-Chaim, D., & Zoller, U. (2007). Purposely teaching for the promotion of higher–order thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353–369.

Barke, H.-D., Harsch, G., & Schmid, S. (2012). Essentials of chemical education. Heidelberg: Springer.

Bensaude-Vincent, B., & Van Tiggelen, B. (2003). Foreword. In C. Djerassi., & R., Hoffmann. Oxygène : Pièce en 1 acte. {Oxygen} (A, Kornprobst & J-C, Kornprobst, J-C., Trans. and Adap.). Toulouse : Presses Universitaires du Mirail.

Bing, W., & Thomas, G. P. (2006). An examination of the change of the junior secondary school chemistry curriculum in the PR China: In the view of scientific literacy. Research in Science Education, 36(4), 403–416.

Braund, M. (2015). Drama and learning science: An empty space? British Educational Research Journal, 41(1), 102–121.

Campbell, W. A. (1981). Edward Turner (1796–1837) and the atomic weight controversy. Analytical proceedings, 18(9), 381–383.

Chang, S.-N. (2007). Teaching argumentation through the visual models in a resource-based learning environment. Asia-Pacific Forum on Science Learning and Teaching, 8(1) 1–15.

Chang, S.-N., & Rundgren, C.-J. (2010). SEE-SEP: From a separate to a holistic view of socioscientific issues. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1–24.

Choi, Y., Ko, Y., & Lee, H. (2015, April). Enhancing Korean middle school students' 21st century skills through collective intelligence based SSI instruction. Paper presented at National Association for Research in Science Teaching (NARST) annual meeting in Chicago, US.

Cottrell, S. (2005). Critical thinking skills. Developing effective analysis and argument. New York: Palgrave Macmillan.

Council of Ministers of Education, Canada (CMEC). (1997). Common framework of science learning outcomes K to 12. Toronto: Council of Ministers of Education, Canada.

de Berg, K. C. (2014). The significance of the origin of physical chemistry for physical chemistry education: The case of electrolyte solution chemistry. Chemistry Education Research and Practice, 15(3), 266–275.

de Hosson, C. (2011). Una controversia histórica al servicio de una situación de aprendizaje: Una reconstrucción didáctica basada en diálogo sobre los dos máximos sistemas del mundo de Galileo. Enseñanza de las Ciencias, 29(1), 115–126.

de Hosson, C., & Kaminski, W. (2007). Historical controversy as an educational tool: Evaluating elements of a teaching–learning sequence conducted with the text ‘‘Dialogue on the ways that vision operates’’. International Journal of Science Education, 29(5), 617–642.

Djerassi, C., & Hoffmann, R. (2001a). Oxygen. Weinheim: Wiley–VCH.

Djerassi, C., & Hoffmann, R. (2001b). Study guide for oxygen. Weinheim: Wiley–VCH.

Djerassi, C., & Hoffmann, R. (2003). Oxygène. Pièce en 1 acte. {Oxygen} (A, Kornprobst & J-C, Kornprobst, J-C., Trans. and Adap.). Toulouse : Presses Universitaires du Mirail.   

Enyedy, N., Goldberg, J., & Welsh, K. M. (2006). Complex dilemmas of identity and practice. Science Education, 90(1), 68–93.

Garritz, A. (2013). Teaching the philosophical interpretations of quantum mechanics and quantum chemistry through controversies. Science & Education, 22(7), 1787–1807.

Gott, R., & Duggan, S. (2003). Understanding and using scientific evidence: How to critically evaluate data. London: Sage.

Greca, I. M., & Freire, Jr. O. (2014). Teaching introductory quantum physics and chemistry: Caveats from the history of science and science teaching to the training of modern chemists. Chemistry Education Research and Practice, 15(3), 286–296.

Hernández, R. (2014). Contexto cultural y currículum en la enseñanza de las ciencias. In A. Molina. (Ed.). Enseñanza de las ciencias y cultura: Múltiples aproximaciones (pp. 145–163). Bogotá: Ediciones Universidad Distrital Francisco José de Caldas.

Izquierdo, M. (2013). School chemistry: An historical and philosophical approach. Science & Education, 22(7), 1633–1653.

Jho, H., Yoon, H.-G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23(5), 1131–1151.

Jiménez-Aleixandre, M. P., & Puig, B. (2012). Argumentation, evidence evaluation and critical thinking. In B. J. Fraser., K. G. Tobin., & C. J. McRobbie. (Eds.). Second international handbook of science education (pp. 1001–1015). Dordrecht: Springer.

Jirout, J., & Klahr, D. (2012). Children’s scientific curiosity: In search of an operational definition of an elusive concept. Developmental Review, 32(2), 125–160.

Judge, B., Jones, P., & McCreery, E. (2009). Critical thinking skills for education students. Padstow: Learning Matters.

Klassen, S., & Froese Klassen, C. (2014). Science teaching with historically based stories: Theoretical and practical perspectives. In M. R. Matthews. (Ed.). International handbook of research in history, philosophy and science teaching (pp. 1503–1529).  Dordrecht: Springer.

Kogut, L. S. (1996). Critical thinking in general chemistry. Journal of Chemical Education, 73(3), 218–221.

Koray, Ö., & Köksal, M. S. (2009). The effect of creative and critical thinking based laboratory applications on creative and logical thinking abilities of prospective teachers. Asia-Pacific Forum on Science Learning and Teaching, 10(1), 1–13.

Kuhn, D. (2005). Education for thinking . Cambridge, MA: Harvard University Press.

Lehman, C., & Bensaude-Vincent, B. (2007). Public demonstrations of chemistry in eighteenth century France. Science & Education, 16(6), 573–583.

Leung, J. Y. M. (1991). Curriculum development in the P. R. China. In C. J. Marsh., & P. Morris. (Eds.). Curriculum development in East Asia (pp. 61–81). London: Falmer.

Lewin, K. M. (1987). Science education in P. R. China: Transformation and change in the 1980’s. Comparative Education Review, 31(3), 419– 441.

Maloney, J. (2007). Children’s roles and use of evidence in science: An analysis of decision-making in small groups. British Educational Research Journal, 33(3), 371–401.

Marshall, J. L., & Marshall, V. R. (2005). Rediscovery of the elements: Joseph Priestley. The Hexagon, 94(2), 28-33.      

Matthews, M. R. (1994). Science teaching: The role of history and philosophy of science. Routledge, New York.

Mercer-Mapstone, L. D., & Kuchel, L. J. (2015). Teaching scientists to communicate: Evidence-based assessment for undergraduate science education. International Journal of Science Education, 37(10), 1613–1638.

Ministère de l’Éducation nationale, de l'Enseignement supérieur et de la Recherche, France (MENESE). (2012). School education in France. Paris: Éduscol.

Ministerio de Educación Nacional, Colombia (MEN). (2006). Estándares básicos de competencias en lenguaje, matemáticas, ciencias y ciudadanas. Bogotá: Ministerio de Educación Nacional, Colombia.

Ministerio de Educación y Ciencia, Spain (MEC). (2007). Real Decreto 1631/2006 Ensenanzas mínimas educación secundaria obligatoria. Madrid: Ministerio de Educación y Ciencia, Spain.

Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT). (2000). Education in Japan 2000: A graphic presentation. Tokyo: Gyosei Corporation.

Montgomery, K. (2009). Using a historical controversy to teach critical thinking, the meaning of "theory", and the status of scientific knowledge. Journal of Geoscience Education, 57(3), 214–221.

Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.

Morris, B. J., Croker, S., Masnick, A. M., & Zimmerman, C. (2012). The emergence of scientific reasoning. In H. Kloos., B. J. Morris., & J. L. Amaral. (Eds.). Current topics in children’s learning and cognition (pp. 61–82). Rijeka: InTech.

National Curriculum in England (NCE). (2014). Science programmes of study. London: Department for Education.  

National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

Next Generation Science Standards (NGSS). (2013). Next generation science standards: For states by states. Washington, DC: National Academies Press.

Niaz, M. (2000). The oil drop experiment: A rational reconstruction of the Millikan–Ehrenhaft controversy and its implications for chemistry textbooks. Journal of Research in Science Teaching, 37(5), 480–508.

Niaz, M. (2009). Progressive transitions in chemistry teachers’ understanding of nature of science based on historical controversies. Science & Education, 18(1), 43–65.

Niaz, M., & Coştu, B. (2013). Analysis of Turkish general chemistry textbooks based on a history and philosophy of science perspective. En M. S. Khine. (Ed.). Critical analysis of science textbooks (pp. 199-218).  Dordrecht: Springer.

Niaz, M., & Rodríguez, M. A. (2000). Teaching chemistry as rhetoric of conclusions or heuristic principles – a history and philosophy of science perspective. Chemistry Education Research and Practice, 1(3), 315–322.

Niaz, M., & Rodríguez, M. A. (2005). The oil drop experiment: Do physical chemistry textbooks refer to its controversial nature? Science & Education, 14(1), 43–57.

Nielsen, K. H. (2013). Scientific communication and the nature of science. Science & Education, 22(9), 2067–2086.

Nogueira, L. (2014). O ensino de qualidade e as implicações na formação de professores. Revista Científica Vozes dos Vales, 6,1–14.

Ødegaard, M. (2003). Dramatic science. A critical review of drama in science education. Studies in Science Education, 39(1), 75–101.

Pallant, A., & Lee, H.-S. (2015). Constructing scientific arguments using evidence from dynamic computational climate models. Journal of Science Education and Technology, 24(2–3), 378–395.

Pongsophon, P., Yutakom., & Boujaoude, S. B. (2010). Promotion of scientific literacy on global warming by process drama. Asia-Pacific Forum on Science Learning and Teaching, 11(1), 1–38.

Russell, T. L. (1981). What history of science, how much, and why? Science Education, 65(1), 51–64.

Sahlberg, P. (2010). The secret to Finland’s success: Educating teachers. Stanford Center for Opportunity Policy in Education ~ Research Brief, September, 1-8.

Silverman, M. P. (1992). Raising questions: Philosophical significance of controversy in science. Science & Education, 1(2), 163–179.

Taber, K. S. (2015). Meeting educational objectives in the affective and cognitive domains: Personal and social constructivist perspectives on enjoyment, motivation and learning chemistry. In M. Kahveci., & M. Orgill. (Eds.). Affective dimensions in chemistry education (pp. 3–27).  Heidelberg: Springer.

Tsaparlis, G., & Finlayson, O. E. (2014). Physical chemistry education: Its many facets and aspects. Chemistry Education Research and Practice, 15(3), 257-265.

Welch, W. W. (1979). Twenty years of science curriculum development: A look back. Review of Research in Education, 7(1), 282–306.

Xiao, S., & Sandoval, W. A. (2015, Abril). Functional roles of inscriptional evidence in children’s written arguments about socioscientific issues. Paper presented at National Association for Research in Science Teaching (NARST) annual meeting in Chicago, US.

Xie, Q., & So, W. (2012). Understanding and practice of argumentation: A pilot study with Mainland Chinese pre–service teachers in secondary science classrooms. AsiaPacific Forum on Science Learning and Teaching, 13(2), 1–20.

Yager, R. E., & Brunkhorst, H. (Eds.). (2014). Exemplary STEM programs: Designs for success. Arlington, Virginia: NSTA Press.

Yenice, N. (2012). A review on learning styles and critically thinking disposition of pre-service science teachers in terms of miscellaneous variables. Asia-Pacific Forum on Science Learning and Teaching, 13(2), 1–31.

Yun, S. M., & Kim, H.-B. (2015). Changes in students’ participation and small group norms in scientific argumentation. Research in Science Education, 45(3), 465–484.

Zhou, Q., Yan, C., Zhao, S., Liu, L., & Xing, L. (2012). A preliminary investigation into critical thinking of in-service and pre-service middle school chemistry teachers in Shaanxi province of China. Asia-Pacific Forum on Science Learning and Teaching, 13(2), 1–13.

Zoller, U., & Pushkin, D. (2007). Matching higher-order cognitive skills (HOCS) promotion goals with problem–based laboratory practice in a freshman organic chemistry course. Chemistry Education Research and Practice, 8(2), 153–171.

 

 


Copyright (C) 2015 HKIEd APFSLT. Volume 16, Issue 2, Article 7 (Dec., 2015). All Rights Reserved.